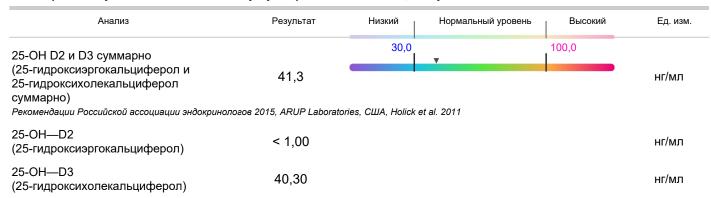


117246, г. Москва, Научный проезд, дом 20, строение 2, эт/пом/ком 2/I/22-30


© +7 (495) 369-33-09

chromolab.ru

Пациент: ОБРАЗЕЦ	№ заявки:	
Возраст: 33 г.		
Пол: М		
Дата взятия:		
Дата выполнения:	Биоматериал: Сыворотка крови	
	Метод: ВЭЖХ-МС/МС	

Витамин D: 25-OH D2 (25-гидроксиэргокальциферол) и 25-OH D3 (25-гидроксихолекальциферол) РАЗДЕЛЬНО, в крови

117246, г. Москва, Научный проезд, дом 20, строение 2, эт/пом/ком 2/I/22-30

@ +7 (495) 369-33-09

chromolab.ru

Напечатано: 05.07.2024 16:42:19 (стр. 2/4)

Пациент: ОБРАЗЕЦ	№ заявки:	
Возраст: 33 г.		
Пол: М		
Дата взятия:		
Дата выполнения:	Биоматериал: Сыворотка крови	
	Метод: ВЭЖХ-МС/МС	

Витамины группы D — предшественники биологически активных веществ, регулирующих множество функций в организме: фосфорно-кальциевый обмен, ремоделирование костной ткани, нейромышечную пластичность, обмен липопротеидов, активность иммунной системы, чувствительность тканей к инсулину и др. Наиболее изученные и клинически значимые формы — это витамин D3 (холекальциферол) и D2 (эргокальциферол).

Источники витамина D3. Образование в коже под действием ультрафиолетовых лучей, рыбий жир, печень тресковых рыб (треска, пикша, минтай, путассу), лососевых, тунца, а также яичный желток.

Источники витамина D2. Искусственное происхождение: лекарственные препараты и биологически активные добавки (БАДы), а также в очень малых количествах хлебобулочные изделия, грибы, сыры с плесенью и продукты растительного происхождения.

Метаболизм витаминов группы D2/D3. В печени происходит гидроксилирование витаминов D2 и D3 по 25-му атому углерода с образованием 25-OH D2 и 25-OH D3, суммарное содержание которых в крови принято обозначать как уровень 25-OH D. 25-OH D – это «способ мобильного депонирования» предшественника биологически активной формы витамина D. Период полувыведения 25-OH D составляет 2-3 недели. Это позволяет по его уровню оценивать достаточность витаминов группы D в организме в целом.

Уровень суммарного содержания 25-ОН D в крови очень вариабелен и зависит от многих причин: от рациона питания (мясо, морепродукты или растительная пища); присутствия в рационе БАДов, содержащих витамин D; географии проживания обследуемого; времени года (зима-лето); степени естественной инсоляции; цвета кожи; наличия острых и хронических заболеваний; культурных и религиозных традиций (ношение одежды, препятствующей доступу солнечных лучей и характера питания); приема лекарственных препаратов, замедляющих 25-гидроксилирование витаминов группы D2/D3 в печени (карбамазепин, вальпроевая кислота и др.).

Биологически активная форма витаминов группы D2/D3 образуется в почках в результате гидроксилирования 25-OH D2 и 25-OH D3 по 1-му атому углерода с образованием 1, 25-OH $_2$ D2 и 1,25-OH $_2$ D3. Эта реакция активируется паратиреоидным гормоном. Период полувыведения 1,25-OH $_2$ D составляет 4-12 часов. Суммарное определение 1,25-OH $_2$ D2/3 в крови особенно актуально для оценки достаточности витаминов группы D2/D3 при патологии паращитовидных желез (вторичный гиперперпаратиреоидизм) и хронических заболеваниях почек.

Инактивация 1,25-OH $_2$ D2/D3, после выполнения им регуляторных функций, а также невостребованного 25-OH D2/D3 происходит путем гидроксилирования по 24-му атому углерода с образованием неактивных форм 1,24,25-OH $_3$ D2/D3 и 24,25-OH $_2$ D2/D3. Это превращение происходит в клетках-мишенях: клетках почечной ткани, энтероцитах, макрофагах, эпидермисе и клетках простаты (но не в гепатоцитах и остеокластах). Гидроксилированные по 24-му атому метаболиты D3, но не D2 превращаются в неактивную кальцитроевую кислоту. В печени 1,24,25-OH $_3$ D2/D3, 24,25-OH $_2$ D2/D3 и кальцитроевая кислота подвергаются глюкуронированию с последующим выведением из организма с мочой и желчью.

Диапазон приведенных в бланке ответа референсных значений для суммарной концентрации 25-OH D2 и 25-OH D3 подвержен вариативности, отличается между популяциями и служит для врача лишь ориентиром ¹. Поэтому в настоящее время для оценки суммарного уровня 25-OH D2 и 25-OH D3 рекомендуется применять целевые значения.

Рекомендуемые целевые значения для уровня 25-ОН D в крови (суммарная концентрация 25-ОН D2 и 25-ОН D3)

Состояние	Российская ассоциация эндокринологов ⁸ , 2014	Производители реагентов для ВЭЖХ-МС/МС, 2011 ⁹	ARUP Laboratories, 2011 ⁴
Выраженный дефицит витамина D	< 10 нг/мл	< 10 нг/мл	< 20 нг/мл
Дефицит витамина D	< 20 нг/мл	10-19 нг/мл	20-29 нг/мл
Недостаточность витамина D	20-30 нг/мл	-	-
Адекватные уровни витамина D	30-100 нг/мл	20-50 нг/мл, (50-80 нг/мл – риск гиперкальциурии)	30-80 нг/мл
Уровни с возможным проявлением токсичности витамина D	> 150 нг/мл	> 80 нг/мл	> 150 нг/мл

117246, г. Москва, Научный проезд, дом 20, строение 2, эт/пом/ком 2/I/22-30

@ +7 (495) 369-33-09

chromolab.ru

Пациент: ОБРАЗЕЦ	№ заявки:	
Возраст: 33 г.		
Пол: М		
Дата взятия:		
Дата выполнения:	Биоматериал: Сыворотка крови	
	Метод: ВЭЖХ-МС/МС	

Классификации дефицита, недостаточности и оптимальных уровней 25-ОН D в крови (суммарная концентрация 25-ОН D2 и 25-ОН D3) по критериям, установленным различными международными профессиональными организациями

Наименование профессиональной организации	Дефицит витамина D	Недостаточное содержание витамина D	Достаточное содержание витамина D
Международное эндокринологическое общество (клинические рекомендации) ⁴ , 2011 год			
Федеральная комиссия Швейцарии по питанию ³	< 20 нг/мл		
Испанское общество исследования костей и минерального обмена ⁷ , 2011 год		21-29 нг/мл	≥ 30 нг/мл
Рекомендации Научного института здоровья, США 2016 ¹⁰			
Европейское общество клинических и экономических аспектов остеопороза и остеоартрита при поддержке Международного фонда остеопороза ² , 2015 год	< 10 нг/мл	< 20 нг/мл	20-30 нг/мл
Национальное общество Великобритании по изучению остеопороза (практические рекомендации) ⁶ , 2013 год; Институт медицины США ⁵	< 12 нг/мл	12-20 нг/мл	> 20 нг/мл
Рекомендации Mercola J, "New analysis claims vitamin d supplements are useless - here's why it's wrong" 2014 ¹¹	-	<50 нг/мл	> 70 нг/мл

Диапазон рекомендованных целевых значений укладывается в технологические пределы определений: для 25-ОН D эта величина составляет 4 - 1024 нг/мл, для 25-ОН D2 и 25-ОН D3 — 4-512 нг/мл.

Альтернативные единицы измерения гидроксилированных производных витаминов D2/D3:

- Суммарная концентрация 25-OH D2 и 25-OH D3 (25-OH D) в нмоль/л= 2,485 х нг/мл
- Концентрации 25-ОН D2 в нмоль/л= 2,423 x нг/мл
- Концентрация 25-ОН D3 в нмоль/л= 2,496 x нг/мл

Исследование выполнено методом высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией (ВЭЖХ-МС/МС), который принят международным лабораторным сообществом в качестве «золотого» стандарта количественного определения гидроксилированных производных витаминов D2/D3.

NB! Приведенная информация носит ознакомительный характер и не рассматривается в качестве диагностической. Интерпретация результатов исследований, установление диагноза, а также назначение лечения в соответствии с Федеральным законом ФЗ № 323 «Об основах защиты здоровья граждан в Российской Федерации» должны производиться врачом соответствующей специализации.

Литература:

- 1. Burtis C.A., Bruns D.E. Tietz Fundamentals of clinical chemistry, sevens edition. Elsvier-Saunders. 2015. P. 757, 759.
- 2. Cianferotti L., Cricelli C., Kanis J.A. et al. The clinical use of vitamin D metabolites and their potential developments: a position statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the International Osteoporosis Foundation (IOF) // Endocrine. 2015. № 50(1). P. 12-26.
- 3. Federal Commission for Nutrition. Vitamin D Deficiency: Evidence, Safety, and Recommendations for the Swiss Population // Expert Report of the FCN. Zurich: Federal Office for Public Health. 2012.
- 4. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A. et al. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine Society Clinical Practice Guideline // Результатов исследований недостаточно для постановки диагноза.

 Напечатано: 05.07.2024 16:42:19 (стр. 3/4) Обязательна консультация лечащего врача.

117246, г. Москва, Научный проезд, дом 20, строение 2, эт/пом/ком 2/I/22-30

@ +7 (495) 369-33-09

chromolab.ru

Пациент: ОБРАЗЕЦ	№ заявки:	
Возраст: 33 г.		
Пол: М		
Дата взятия:		
Дата выполнения:	Биоматериал: Сыворотка крови	
	Метод: ВЭЖХ-МС/МС	

- The Journal of clinical endocrinology and metabolism. 2011. № 96(7). P. 1911-1930.

 5. Institute of Medicine. Clinical Practice Guidelines We Can Trust // Washington, DC: The National Academies Press (US). 2011. 290 p.
- 6. Kanis J.A., McCloskey E.V., Johansson H. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women // Osteoporosis International. – 2013. – № 24(1). – P. 23-57.
- 7. Sociedad Española de Investigación Ósea y del Metabolismo Mineral (SEIOMM) y Sociedades afines, Documento de posición sobre las necesidades y niveles óptimos de vitamina D // Revista de osteoporosis y metabolismo mineral. 2011. № 3. Р. 53-64.
- 8. Российская ассоциация эндокринологов ФГБУ «Эндокринологический научный центр» Минздрава России. Федеральные клинические рекомендации «Дефицит витамина D: диагностика, лечение и профилактика» (проект). - 2014. - 77 с.
- 9. Thomas L. Labor und Diagnose. 7. Aufl., Verlag TH-Books, Frankfurt/Main. 2008.
- 10. Рекомендации Научного института здоровья, США 2016
- 11. Рекомендации Mercola J, «New Analysis Claims Vitamin D Supplements Are Useless Here's Why It's Wrong» 2014

Примечание.

Перечень доступных исследований для количественного определения гидроксилированных производных витаминов D2/D3:

- Витамин D: 25-OH D2 (25-гидроксиэргокальциферол) и 25-OH D3 (25-гидроксихолекальциферол) СУММАРНО, в крови.
- Витамин D: 25-OH D2 (25-гидроксиэргокальциферол) и 25-ОН D3 (25-гидроксихолекальциферол) РАЗДЕЛЬНО, в крови.
 - © Приведенная информация является объектом авторского права ООО «ХромсистемсЛаб»

Врач КДЛ:	Одобрено:

Система управления и менеджмента качества лаборатории сертифицирована по стандартам ГОСТ Р ИСО 15189.

Лаборатория регулярно проходит внешнюю оценку качества клинических лабораторных исследований по отечественным (ФСВОК) и международным (RIQAS, RfB, ERNDIM) программам. ООО «ХромсистемсЛаб» является членом ассоциации "Федерация Лабораторной Медицины", сотрудники ООО «ХромсистемсЛаб» входят в состав комитета по хроматографическим методам исследований и хромато-масс-спектрометрии.

Лицензия: Л041-01137-77/00368418 от 23.09.2020 г.

Напечатано: 05.07.2024 16:42:19 (стр. 4/4)

Результаты, которые отображены в виде числа со знаком <, необходимо расценивать как результат меньше предела количественного обнаружения методики и оборудования на котором выполнялся анализ.